

Afera Annual Conference 4 - 6 October 2017 Starhotel Majestic, Turin

HIGH PERFORMANCE POLYMERS DIVISION

LIQUID POLYMER GROUP

MS Polymer[™] based PSA Technology

Michel Ravers Kaneka Belgium

Outline

A. Introduction

- 1. Kaneka Liquid Polymer Group
- 2. Chemistry
- 3. Activities in the Adhesive world
- 4. Characteristics of MS Polymer[™]

B. Formulating Routes

- 1. Different roles of MS Polymer[™]
- 2. Performance of MS Polymer[™] based PSA

C. Manufacturing

- 1. Challenges
- 2. Co-Creation

Kaneka Corporation

- ✓ Established:
- ✓ Headquarters:
- ✓ Net Sales:
- Employees:
- Operations in:
- Business Units:

September 1st, 1949 Tokyo and Osaka 555 billion yen (2016) 8500 (2016) Japan, Belgium, United States, Germany, Singapore, Malaysia, Australia, China, India,

foodstuff products, life science products, expandable plastics, chemicals, synthetic fibres, electronic products, functional plastics

HIGH PERFORMANCE POLYMERS DIVISION

GROUP

The Dreamology Company -Make your dreams come true-

A. Introduction

Kaneka Belgium NV

- Established:
- ✓ Turnover:
- ✓ Employees:
- ✓ Size:
- Business Units:

1970
290 M€ (2016)
350 (2016)
260 000 m²
Modifiers
Expanded Plastics
Liquid Polymers

Kane Ace[™] Eperan[™] Kaneka MS Polymer[™]

The Dreamology Company -Make your dreams come true-

2. Chemistry

MS Polymer[™]: modified silicone

$$R_{1} = R_{2} = OCH_{3} CH_{3} dimethoxysilyl MS Polymer^{TM} \rightarrow DMS$$

$$R_{1} = R_{2} = R_{3} = OCH_{3} Trimethoxysilyl MS Polymer^{TM} \rightarrow TMS$$

$$CH_{3} CH_{3} CH_{3$$

LIQUID POLYMER GROUP

A. Introduction

LIQUID POLYMER GROUP

A. Introduction

3. Product Portfolio

	Dimetho	oxymethylsilane	MS Polymer [™]	
Grade	ТҮРЕ	Structure	Mw	Content of functional group in polymer
S203H	DMS-MS	ţ	**	*
S303H	DMS-MS	\$	***	**
S227	DMS-MS	$ \Longleftrightarrow $	***	*
S327	DMS-MS	$ \Longleftrightarrow $	***	**
SAX220	DMS-MS	$ \Longleftrightarrow $	$\star\star\star$	**
SAX260	DMS-MS		**	**
SAX350	DMS-MS	$ \Longleftrightarrow $	**	**
SAX400	DMS-MS	\$	***	***
SAT010	DMS-diluent		*	**
SAX015	DMS-diluent	\$	*	***
SAT115	DMS-diluent	$ \Longleftrightarrow $	*	*
SAT145	DMS-diluent	ļ	*	Monofunctional
SAX750	DMS High Strength	$ \Longleftrightarrow $	***	**

	Trime	thoxysilane MS	Polymer [™]	
Grade	ТҮРЕ	Structure	Mw	Content of functional group in polymer
SAX510	TMS-MS		***	*
SAX520	TMS-MS	$ \Longleftrightarrow $	***	**
SAX530	TMS-MS	$ \Longleftrightarrow $	**	**
SAX580	TMS-MS	\$	***	**
SAX590	TMS-MS	, 1 ,	**	**
SAX575	TMS High Strength	$ \Longleftrightarrow $	***	**
	LOW	*	LINEAR	$ \Longleftrightarrow $
	LOW MEDIUM	**	BRANCHED	
	MEDIUM	**	SPECIAL TERMINA	ls
	MEDIUM HIGH	***		

HIGH

 $\star\star\star$

3. Product Portfolio

LIQUID POLYMER GROUP

TECHNOLOGY	FEATURE	TECHNOLOGY	FEATURE	
Dimethoxysilyl MS Polymer [™] (DMS-MS)	 Wide viscosity range Various mechanical properties Very good adhesion profile Excellent stability Varying workability 	Trimethoxysilyl MS Polymer [™] (TMS-MS)	 Wide viscosity range Fast cure / less catalyst Various mechanical properties Higher elastic recovery Good adhesion profile Excellent stability Varying workability 	
Dimethoxysilyl MS Polymer [™] acryl modified DMS-MA(X)	 Excellent adhesion profile High weather resistance Excellent stability 	Trimethoxysilyl MS Polymer [™] acryl modified TMS-MA(X)	 Excellent adhesion profile Fast cure / less catalyst High weather resistance Excellent stability 	
Dimethoxysilyl MS Polymer [™] (DMS-MS) Reactive Diluents	Very low viscosityModulus controlNon migrating			
High strength dimethoxysilyl MS Polymer™(HS-DMS)	High strengthGood elasticity	High strength trimethoxysilyl MS Polymer [™] (HS-TMS)	High strengthFast cure / less catalyst	
		High strength trimethoxysilyl MS Polymer [™] acryl modified (HS-A TMS)	 Highest strength Excellent adhesion Fast cure / less catalyst 	

4. Activities in the adhesive world

Construction: Sealant / Adhesive Waterproofing Glazing Parquet adhesive Automotive: Sealant / Adhesive NVH

Civil Engineering: Sealant / Adhesive **Consumer DIY:** Sealant / Adhesive

GROUP

5. Characteristics of MS Polymer[™]

Base polymer properties:

Clear solution Liquid at room temperature no smell low volatile low Tg

Chemical crosslinked matrix \implies good heat and chemical resistance Compatible with high amount of SBC's, Acrylics, Resins (non aliphatic), various additives HIGH PERFORMANCE POLYMERS DIVISION

C D O I D

MS Polymer[™] must be a suitable chemistry for PSA

GROUP

B. Formulating Routes

1. Different roles of MS Polymer[™]

a. MS Polymer[™] as additive in a 'classic' PSA formulation

- 2 to 25 pph in a hotmelt or solvent rubber or acrylic formulation
- Example solvent 2EHAcrylate + 20% terpene phenolic resin + 15% MS polymerTM with a Titanium based catalyst

60gr/m²	tackified Acrylic	tackified Acrylic + 15% MS Polymer [™]
Finat Tack on glass N/25mm	28	22
Finat Tack on glass 7°C	0,5 (sh)	14,2
180° PA SS N/25mm	20,8	19,8
180° PA PP N/25mm	2,0 (sh)	9,1
RBT (rolling ball tack) mm	300	160
Tg (measured with DMA,1hz) °C	-6	-19
Shear strength after solvent immersion (toluene) N/144mm ²	6	32
SAFT 1kg °C	147	170

Increase softness Improve wetting/bonding Expand temperature range

Improve cohesive network Increased temperature & chemical resistance

Rheology (measured @1Hz)

GROUP

B. Formulating Routes

1. Different roles of MS Polymer[™]

b. MS Polymer[™] as the main polymer in a PSA formulation

- Example: Design Of Experiments 2 MS Polymer types (high Mw and low Mw) + terpene phenolic resin (fixed components Titanium based catalyst and Aox)
- Coatings 60gr/m² on a heated vacu-table at 70°C (cured 5min 130°C)

B. Formulating Routes

1. Different roles of MS Polymer[™]

b. MS Polymer[™] as the main polymer in a PSA formulation

It is possible to generate various formulations resulting in soft (semi) removable adhesives or aggressive high adhesion versions and in between.

Chemical crosslinking of the matrix secures a wide temperature window (vs rubber based) High loading of resins possible (vs modified acrylic)

C. Manufacturing

1. Challenges

- 1. Non solvent route of a MS Polymer[™] based Tape requires:
 - 1. Warm/Hot melt mixing (N_2 blanket or Vacuum) 90°C up to 150°C depending on used resins
 - 2. Inline mixing of Catalyst before coating (or extrusion mixing)
 - 3. Heated coating station (60°C up to 100°C)
 - 4. Curing oven
- 2. Moisture curing process is not common in psa world:
 - 1. Aside assets, lack of experience with the technology could be a roadblock
 - 2. Little to no examples or commercial available benchmark products available

2. Cooperation

1. To better introduce this new polymer in the 'traditional' PSA world a cooperation has been set up to increase knowledge and materialise the lab developments/evaluations in roll format (pilot- and/or production scale)

C. Manufacturing

1. Cooperation for the MS PolymerTM based PSA

kaueka

-Make your dreams come true-

- MS polymer recommendation
- Formulating
- Lab mixing/coating
- Testing
- Technical Service
- Design new polymer grades (psa-specific)

- Compounding
- Formulating
- Pilot mixing/coating

- Machine building
- ILM
- Production coating

HIGH PERFORMANCE ERS DIVISION

LIQUID POLYMER

era GROUP **Good partnerships generate great** results

Over the years, Kaneka has developed very positive and long-term relationships with customers, employees, community stakeholders.

We strongly believe that strong partnerships can generate great results!

Every day, we do our very best to focus on these relationships and we strive for a first class partnership!

kaneka

Creating a life-changing impact through partnerships

Afera Annual Conference 4 - 6 October 2017 Starhotel Majestic, Turin

HIGH PERFORMANCE POLYMERS DIVISION

LIQUID POLYMER GROUP

Thank You for your attention

MS Polymer based PSA technology

Michel Ravers R&DPSA Specialist michel.ravers@kaneka.be

